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ditions at frequencies less than 100 MHz [4]. This is because mus-
cle is primarily resistive below 100 MHz: the loss tangent (the ratio
of the loss factor to the dielectric constant) increases from 2.1 at
100 MHz to 5.8 at 13.56 MHz for dog skeletal muscle [5]. Others
have used phantoms simulating both the dielectric constant and the
conductivity of muscle at frequencies below 100 MHz [7]-[9], and
the new mixtures described may also be considered in applications
requiring complete simulation of the dielectric properties of mus-
cle.

We do not report thermal properties of these new tissue-simu-
lating materials. However, other phantom materials [30] and di-
verse biological materials [31] with high water content have heat
capacities and thermal conductivity values close to those of pure
water, and we expect that the materials described here will as well.
For precise studies involving calorimetry, the heat capacity of any
phantom should be measured directly by the investigator.
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Microstrip Resonators on Anisotropic Substrates

Thinh Quoc Ho, Benjamin Beker, Yi Chi Shih, and
Yinchao Chen

Abstract—The spectral domain method is applied to study shielded
microstrip resonators printed on anisotropic substrates. A Green’s
function that takes into account the dielectric anisotropy effects is de-
rived through a fourth order formulation. Galerkin’s method is then
applied to form the characteristic equation from which the resonant
frequency of the microstrip resonator is numerically obtained. Results
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for a microstrip resonator situated on an is/otropic substrate are used
to validate the theory.

I. INTRODUCTION

Microstrip and disk resonators are among key important ele-
ments in the design of microwave and millimeter-wave frequency
sources and filtering networks [1]. The analysis of such structures
has been extensively investigated by numerous authors. Different
methods based on various approximations [2] to the quasi-static
approach [3]-[4] have been used to study these resonators. Since
these analyses are based on approximations, which are inaccurate
for high frequency applications, quite often a correction factor is
needed in order to compensate for the dispersion effects. More ac-
curate theories have been developed and implemented to study the
characteristics of the microstrip resonators, as documented in {5]~
[6]. Up until now, the emphasis of the resonator studies have been
directed towards structures printed on isotropic materials, that is,
the substrate being characterized by a zero-rank permittivity ten-
SOr.

In this paper, a full-wave analysis via the spectral domain ap-
proach is used to study the characteristics of shielded microstrip
resonators printed on anisotropic substrates. The material is char-
acterized by a second rank permittivity tensor in which all diagonal
elements can be distinct. The Green’s function of the structure is
derived by applying the resonance conditions and by solving the
fourth-order differential equations in the Fourier domain. A pro-
cedure based on Galerkin’s method is then used to form the char-
acteristic equation from which the resonant frequency of the reson-
ator is numerically obtained. Data for a resonator printed on an
isotropic substrate, which is treated as a special case of anisotropic,
are computed and then compared to existing data, and good agree-
ment is observed. The resonant frequencies of the microstrip re-
sonators on anisotropic materials, such as PTFE cloth, boron ni-
tride, epsilam-10, and sapphire are then computed.

II. THEORY

The microstrip resonator structure under consideration is shown
in Fig. 1 along with the coordinate system used. A rectangular strip
of width w and length d is printed on one side of the anisotropic
layer situated inside a shielded housing. For simplicity of the anal-
ysis, it is assumed that the operating frequency is below the cut-
off frequency of the partially loaded waveguide. The substrate,
which extends from —b /2 to +b/2, is also assumed to be lossless
with thickness #,. The distance from the microstrip resonator to the
top cover is h,. In general, the anisotropic medium is characterized
by its permittivity tensor: ’

& 0 O
[l =€ |0 ¢ O and [u] = wll] ()
0 0 ¢

where ¢, and pu, are the free-space values.

The vector wave equations for the components of the electric and
magnetic fields within the anisotropic layer, which can be manip-
ulated from Maxwell’s equations, are expressed in their simplified
forms as
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Fig. 1. Geometry of the shielded microstrip resonator. (2) End view. (b)
Top view.

The Fourier transform of any quantity is defined through the fol-
lowing relation:

% b/2
¥(x, o f) = Lo S_b , Y&y e dydz ()

with o and 8 being the Fourier transform variables. When (2a) and
(2b) are transformed according to (3) and reduced, a set of coupled
differential equations written in terms of the tangential electric fields
can be derived: )

d*E, B B
——dxz + »E, + E, =0 (4a)
d&PE, N
Fro nk + 2k =0 (4b)

with y,, y4, 2, and z, are the transformed coefficients. In order to
find the solution for E, or E,, (4a) and (4b) are then decoupled
yielding a fourth order differential equation for either field. Once
the tangential field solutions are found, the remaining components
in the anisotropic region are then derived and they are expressed
in their generalized forms as

E, = Af sin (v, x) + B} sin (y_x) (5a)

E, = Ef A} sin (y,.x) + E, By sin (y-%)

(5b)

H, = (jop,) "H Ay cos (y+x) + (jopo) ' H By cos (y-x)
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' (59)
with ‘
Ef ={(.) — 2}/u (6a)
53=L{a25;+66—”} (6b)
Y+ Exx €xx



764 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO 4, APRIL 1992
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where v, can be obtained by solving the fourth order characteristic
equation through the method described in [7].

The fields within the isotropic region 2 can be derived based on
the superposition of TE and TM fields. The transforms of the scalar
potentials, which are used to find the field components, are written
below:

2 Teh

Tt ()" = 0. )

After applying the boundary conditions at the top cover x = h,
+ h,, the field expressions for region 2 are,

E~_V2 = {c|4, — B} sinyv,(h, + b, — %) (8a)
E, = c3B, sin yo(h, + hy — %) (8b)
Hy = {csd, + ¢sB,} cos volhy + by — %) (8¢)
Hy = cgA, c0s yo(hy + hy — x) (8d)

with ¢, to ¢4 are the known constants.

At the air-anisotropic layer interface x = h;, the appropriate
boundary conditions are also imposed so that a set of matrix equa-
tions can be formed yielding the expression for the impedance
Green’s function:

Cullos . ) Golh o, B | | et 6)' _ B 6)1 o
Gyky, o, B) Gyylhys o, B)| [T, B [E(er, B)
with the matrix elements defined as
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det = H H, — H,H, (9b)
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The remaining constants in (9¢)-(91), &, to £,,, can be written in
terms of the transformed variables as well as the medium parame-
ters.

To find the resonant frequency of the microstrip resonator, a pro-
cedure based on the Galerkin technique [6] is used, by first ex-
panding the unknown currents J, and J; in terms of known basis
functions:

M
I, B) = 2 Culyler, B) (102)

N
T, B) = 2 DyJoule, B) (10b)

and then, substituting J, and J; into the impedance Green’s function
(9a), and after taking the inner products with fy, and J,, for different
indexes i, a set of algebraic equations is derived:

M N
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The right hand sides of (11a) have been eliminated in the Galerkin
process through the application of Parseval’s theorem. The simul-
tancous equations are then solved for the wave number &, by setting
the determinant of the coefficient matrix equal to zero and search
for the root of the resulting equation.

For the dominant mode, J,, and J, are chosen to have the fol-
lowing forms:

T, B) = Ji(e) Jy(8)
Jale, B) = (o) Ji(B)

where the inverse transforms of J, J,, J5, and J, are given by

(12a)
(12b)
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Note that the form of J; and J; is identical to the one used for
computing the dispersive characteristics of infinitely long micro-
strip lines.

III. ResuLTS

To validate the theory, the resonant frequency of a shielded mi-
crostrip resonator printed on an isotropic substrate, which is treated
as a special case of anisotropy, is computed and compared to pub-
lished data. The dimensions of the structure are b = 155.0 mm, h,
= 12.7 mm, A, = 88.9 mm, and w = 20.0 mm. The substrate is
characterized by its permittivity tensor as ¢,, = €,, = ¢, = 2.65.
Fig. 2 shows the response of the resonant frequency of the reso-
nator with respect to different physical lengths. As can be seen, the
resonator may resonate anywhere between 0.5 GHz to 0.8 GHz
range, depending on the chosen dimensions. Plotted also with our
data are the results reproduced from reference [6], and an excellent
agreement is observed.
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Fig. 3. Resonant frequency of the microstrip resonator printed on aniso-
tropic substrates with b = 155.0 mm, hl = 12.7 mm, h, = 88.9 mm, and
w = 20.0 mm.

Next, the data for microstrip resonators printed on anisotropic
substrates are computed. For the biaxial substrate, namely PTFE
cloth, the medium parameters are ¢,, = 2.45, ¢, = 2.89, and ¢,
= 2.95. For the uniaxial cases, they are specified as ¢,, = 3.4 and
€y = €, =5.12, ¢, = 10.3 and ¢, = ¢,, = 13.0, and ¢,,, = 11.6
and ¢,, = ¢,, = 9.4, written respectively for boron nitride, epsilam-
10, and sapphire. Fig. 3 shows how the resonant frequency re-
sponds when various materials are used. Note that the physical pa-
rameters used here are the same as for those previously specified
for the resonator printed on the isotropic substrate. The results show
that by changing the medium from PTFE cloth to boron nitride,
the resonant frequency reduces considerably, and this is in contrast
to what happens when the medium changes from epsilam-10 to sap-
phire. In the second case, only a small variation in resonant fre-
quency is observed. This behavior can be confirmed by using trans-
mission line theory, where the resonant frequencies of the
tesonators are approximated by (N,/2)/Veer. Since the effective
dielectric constant of an infinitely long microstrip line on epsilam-
10 is very close to that computed for the sapphire substrate, this

implies that the resonant frequencies of the resonators for these-two
media are just about the same.

1V. CoNcLUusION

An analysis based on the spectral domain method applied to study
shielded microstrip resonators printed on anisotropic materials was
presented. The anisotropic layer is generally specified by its second
rank permittivity tensor. The Green’s function for the structure is
obtained through a fourth order D. E. formulation. Galerkin’s
method testing procedure in the Fourier domain is applied to form
the characteristic equation from which the resonant frequency of
the resonator is numerically obtained. Data on the resonant fre-
quency of resonators printed on both uniaxial and biaxial substrates
were also generated: ‘
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Analysis of a Coupled Slotline on a Double-Layered
Substrate Containing a Magnetized Ferrite

Masahiro Geshiro and Tatsuo Itoh

Abstract—Nonreciprocity in the propagation characteristics of the
even and odd modes in magnetized-ferrite-loaded double-layered cou-
pled slotlines is studied. The analysis is based on Galerkin’s method
applied in the Fourier transform domain. Numerical results are pre-
sented for various values of structural parameters. As a result, it is
found that the waveguide structures studied have sufficient nonreci-
procity in propagation constants for isolators and four port circula-
tors.

I. INTRODUCTION

Slotlines are well suited for their usage in nonreciprocal ferrite
devices for microwave integrated circuits since the magnetic field
has elliptical polarization [1]. Recently, several analytical methods
for propagation characteristics in slotlines and finlines containing

Manuscript received May 14, 1991; revised October 30, 1991.

M. Geshiro is with the Department of Electronics, Ehime University,
Bunkyo-3, Matsuyama, Ehime 790, Japan.

T. Itoh is with the Department of Electrical Engineering, The University
of California at Los Angeles, 66-147A Engineering IV, Los Angeles, CA
90024-1594.

IEEE Log Number 9106046.

0018-9480/92$03.00 © 1992 IEEE



